Математика : Геометрия

194 / 695
Записей показано: 194, всего в разделе «Математика»: 695

Содер­жа­ние руб­рики: осно­ва­ния геомет­рии и ее стро­е­ние, неев­кли­довы геомет­рии, геомет­рия прямых и кри­вых, много­уголь­ники и многогран­ники, геомет­ри­че­ские пре­об­ра­зо­ва­ния и постро­е­ния, исто­рия геомет­рии, задачи и реше­ния.


Четверухин Н. Ф. Стереометрические задачи на проекционном чертеже. — 1955  Четверухин Н. Ф. Стереометрические задачи на проекционном чертеже : пособие для учителей / Акад. пед. наук РСФСР. Ин-т методов обучения. — 3-е изд. — М. : Учпедгиз, 1955. — 128 с. Чистяков В. Д. Три знаменитые задачи древности. — 1963  Чистяков В. Д. Три знаменитые задачи древности : пособие для внеклассной работы. — М. : Учпедгиз, 1963. — 96 с. — Библиогр.: с. 92—94. Шень А. Х. Геометрия в задачах. — 2017  Шень А. Х. Геометрия в задачах. — 3-е изд. — М. : МЦНМО, 2017. — 240 с. Шклярский Д. О. и др. Геометрические неравенства и задачи на максимум и минимум. — 1970  Шклярский Д. О. и др. Геометрические неравенства и задачи на максимум и минимум / Д. О. Шклярский, Н. Н. Ченцов, И. М. Яглом. — М. : Наука, 1970. — 336 с. — (Библиотека математического кружка ; вып. 12). Шклярский Д. О. и др. Геометрические оценки и задачи из комбинаторной геометрии. — 1974  Шклярский Д. О. и др. Геометрические оценки и задачи из комбинаторной геометрии / Д. О. Шклярский, Н. Н. Ченцов, И. М. Яглом. — М. : Наука, 1974. — 384 с. — (Библиотека математического кружка ; вып. 13). Шрейдер Ю. А. Что такое расстояние? — 1963  Шрейдер Ю. А. Что такое расстояние? — М. : Физматгиз, 1963. — 76 с. — (Популярные лекции по математике ; вып. 38). Штейнер Я. Геометрические построения, выполняемые посредством прямой линии и неподвижного круга. — 1910  Штейнер Я. Геометрические построения, выполняемые посредством прямой линии и неподвижного круга, как предмет преподавания в средних учебных заведениях и для практического применения / пер. П. М. Ерохина и Р. И. Гольцберга ; под ред. Д. М. Синцова. — Харьков : тип. и лит. М. Зильберберг и сыновья, 1910. — XVI, 96 с., [1] л. черт. — (Харьковская математическая библиотека ; № 1). — Библиогр. в прим. Энциклопедия элементарной математики. Кн. 4: Геометрия. — 1963  Энциклопедия элементарной математики / Акад. пед. наук РСФСР ; [гл. редакция: П. С. Александров, А. И. Маркушевич, А. Я. Хинчин]. — Кн. 4 : Геометрия / [ред.: В. Г. Болтянский, И. М. Яглом]. — М. : Физматгиз, 1963. — 568 с. — Имен. указ.: с. 558—559. — Предм. указ.: с. 560—567. — Библиогр. в конце статей. Энциклопедия элементарной математики. Кн. 5: Геометрия. — 1966  Энциклопедия элементарной математики / Акад. пед. наук РСФСР ; [гл. редакция: П. С. Александров, А. И. Маркушевич, А. Я. Хинчин]. — Кн. 5 : Геометрия / [ред.: В. Г. Болтянский, И. М. Яглом]. — М. : Физматгиз, 1966. — 624 с. — Имен. указ.: с. 609—611. — Предм. указ.: с. 612—624. — Библиогр. в конце статей. Яглом И. М., Болтянский В. Г. Выпуклые фигуры. — 1951  Яглом И. М., Болтянский В. Г. Выпуклые фигуры. — М. ; Л. : Гостехиздат, 1951. — 344 с. — (Библиотека математического кружка ; вып. 4). Яглом И. М. Геометрия точек и геометрия прямых. — 1968  Яглом И. М. Геометрия точек и геометрия прямых. — М. : Знание, 1968. — 48 с. — (Новое в жизни, науке, технике. Математика, кибернетика ; 10/1968). — Библиогр.: с. 43—44 (19 назв.). Яглом И. М. О комбинаторной геометрии. — 1971  Яглом И. М. О комбинаторной геометрии. — М. : Знание, 1971. — 64 с. — (Новое в жизни, науке, технике. Математика, кибернетика ; 8/1971). — Библиогр.: с. 60 (13 назв.). Яглом И. М. Принцип относительности Галилея и неевклидова геометрия. — 1969  Яглом И. М. Принцип относительности Галилея и неевклидова геометрия. — М. : Наука, 1969. — 304 с. — (Библиотека математического кружка ; вып. 11). — Библиогр.: с. 300—303 (82 назв.). Яглом И. М. Элементарная геометрия прежде и теперь. — 1972  Яглом И. М. Элементарная геометрия прежде и теперь. — М. : Знание, 1972. — 48 с. — (Новое в жизни, науке, технике. Математика, кибернетика ; 10/1972). — Библиогр в прим. (62 назв.).
Про­должая исполь­зо­вать дан­ный сайт, вы выража­ете согла­сие с усло­ви­ями его исполь­зо­ва­ния